Cohen Macaulay Bipartite Graphs and Regular Element on the Powers of Bipartite Edge Ideals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shellable graphs and sequentially Cohen-Macaulay bipartite graphs

Associated to a simple undirected graph G is a simplicial complex ∆G whose faces correspond to the independent sets of G. We call a graph G shellable if ∆G is a shellable simplicial complex in the non-pure sense of Björner-Wachs. We are then interested in determining what families of graphs have the property that G is shellable. We show that all chordal graphs are shellable. Furthermore, we cla...

متن کامل

Sequentially Cohen-macaulay Bipartite Graphs: Vertex Decomposability and Regularity

Let G be a bipartite graph with edge ideal I(G) whose quotient ring R/I(G) is sequentially Cohen-Macaulay. We prove: (1) the independence complex of G must be vertex decomposable, and (2) the Castelnuovo-Mumford regularity of R/I(G) can be determined from the invariants of G.

متن کامل

Sequentially Cohen-macaulay Edge Ideals

Let G be a simple undirected graph on n vertices, and let I(G) ⊆ R = k[x1, . . . , xn] denote its associated edge ideal. We show that all chordal graphs G are sequentially Cohen-Macaulay; our proof depends upon showing that the Alexander dual of I(G) is componentwise linear. Our result complements Faridi’s theorem that the facet ideal of a simplicial tree is sequentially Cohen-Macaulay and impl...

متن کامل

On sum edge-coloring of regular, bipartite and split graphs

An edge-coloring of a graph G with natural numbers is called a sum edge-coloring if the colors of edges incident to any vertex of G are distinct and the sum of the colors of the edges of G is minimum. The edge-chromatic sum of a graph G is the sum of the colors of edges in a sum edge-coloring of G. It is known that the problem of finding the edge-chromatic sum of an r-regular (r ≥ 3) graph is N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2019

ISSN: 2227-7390

DOI: 10.3390/math7080762